Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Aerosol Med Pulm Drug Deliv ; 36(3): 101-111, 2023 06.
Article in English | MEDLINE | ID: covidwho-2314611

ABSTRACT

Background: Aerosol therapies with vented facemasks are considered a risk for nosocomial transmission of viruses such as severe acute respiratory syndrome coronavirus 2. The transmission risk can be decreased by minimizing aerosol leakage and filtering the exhaled air. Objective: In this study, we determined which closed facemask designs show the least leakage. Methods: Smoke leakage was quantified during in- and exhalation in a closed system with expiration filter for three infant, six child, and six adult facemasks (three times each mask), using age-appropriate anatomical face models and breathing patterns. To assess leakage, smoke release was recorded and cumulative average pixel intensity (cAPI) was calculated. Results: In the adult group, aircushion edges resulted in less leakage than soft edges (cAPI: 407 ± 250 vs. 774 ± 152) (p = 0.004). The Intersurgical® Economy 5 mask (cAPI: 146 ± 87) also released less smoke than the Intersurgical® Clearlite 5 (cAPI: 748 ± 68) mask with the same size, but different geometry and edge type (p-value <0.05). Moreover, mask size had an effect, as there was a difference between Intersurgical® Economy 4 (cAPI: 708 ± 346) and 5, which have the same geometry but a different size (p-value <0.05). Finally, repositioning masks increased the standard deviations. Mask leakage was not dependent on breathing patterns within the child group. Conclusions: Mask leakage can be minimized by using a closed system with a well-fitting mask that is appropriately positioned. To decrease leakage, and therewith minimize potential viral transmission, selecting a well-fitting mask with an aircushion edge is to be recommended.


Subject(s)
COVID-19 , Adult , Child , Infant , Humans , Masks , Administration, Inhalation , Pandemics , Respiratory Aerosols and Droplets , Smoke
2.
Mask Interfaces for Noninvasive Mechanical Ventilation: Principles of Technology and Clinical Practice ; : 305-317, 2022.
Article in English | Scopus | ID: covidwho-2046440

ABSTRACT

Noninvasive ventilation [NIV] is used extensively in acute and chronic settings, at home, and in hospitals. It plays a pivotal role in managing respiratory failure during the COVID-19 pandemic with robust use in hospitals to avert the need for intubation as well as reintubation. However, its use is associated with aerosol generation, which poses an immediate threat to all who work around it, like healthcare workers. Besides, domiciliary use is also associated with the same risk to the household and caregivers. Therefore, we need to plan the therapy and forge guidelines and recommendations to keep NIV safe during infections. Here we have reviewed the available literature and applied our experience to formulate guidelines and recommendations. However, updates and appraisals are evolving rapidly, and we need to keep our eyes open to tailor our approach. © 2022 by Nova Science Publishers, Inc. All rights reserved.

3.
Mol Ther ; 30(5): 1979-1993, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1677227

ABSTRACT

As of December 2021, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global emergency, and novel therapeutics are urgently needed. Here we describe human single-chain variable fragment (scFv) antibodies (76clAbs) that block an epitope of the SARS-CoV-2 spike protein essential for ACE2-mediated entry into cells. 76clAbs neutralize the Delta variant and other variants being monitored (VBMs) and inhibit spike-mediated pulmonary cell-cell fusion, a critical feature of COVID-19 pathology. In two independent animal models, intranasal administration counteracted the infection. Because of their high efficiency, remarkable stability, resilience to nebulization, and low cost of production, 76clAbs may become a relevant tool for rapid, self-administrable early intervention in SARS-CoV-2-infected subjects independently of their immune status.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin Fragments , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
4.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1577575

ABSTRACT

Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.


Subject(s)
Aerosols , COVID-19 , Drug Delivery Systems , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nebulizers and Vaporizers , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design , Humans , Infection Control/methods , Models, Biological , Particle Size , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , SARS-CoV-2
5.
Drug Deliv ; 28(1): 1496-1500, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1309552

ABSTRACT

COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.


Subject(s)
Aerosols , COVID-19 , Disease Transmission, Infectious/prevention & control , Metered Dose Inhalers , Nebulizers and Vaporizers , Respiration, Artificial/methods , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/physiopathology , COVID-19/therapy , COVID-19/transmission , Combined Modality Therapy , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Occupational Exposure/prevention & control , Research Design , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , Risk Management , SARS-CoV-2
7.
Ann Transl Med ; 9(7): 590, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1257378

ABSTRACT

Using high-flow nasal cannula (HFNC) as a "vehicle" to administer aerosolized medication has attracted clinicians' interest in recent years. In this paper, we summarize the current evidence to answer the common questions raised by clinicians about this new aerosol delivery route and best practices of administration. Benefits of trans-nasal aerosol delivery include increased comfort, ability to speak, eat, and drink for patients while meeting a range of oxygen requirements, particularly for those who need to inhale aerosolized medication for long periods. Aerosol administration via HFNC has been shown to be well tolerated by children and adults, with comparable or better delivery efficacy than other interfaces, ranging from 2-20%. In vitro and in vivo scintigraphy studies among pediatric and adult populations reported that the inhaled dose delivered via a vibrating mesh nebulizer is 2 to 3 fold greater than that via a jet nebulizer. For adults, placement of nebulizer at the inlet of humidifier increases inhaled dose while reducing rainout obstructing nasal prongs. When HFNC gas flow is set below patient inspiratory flow, aerosol deposition is higher than when the gas flow exceeds patient inspiratory flow; thus, if tolerated, titrating down HFNC gas flow during trans-nasal aerosol delivery, with close monitoring and the use of unit dose with high concentration are recommended. Trans-nasal pulmonary aerosol delivery has not been shown to increase bioaerosols generated by patients, but gas flow may disperse aerosols. Placement of a surgical or procedure mask over HFNC might reduce aerosol dispersion.

SELECTION OF CITATIONS
SEARCH DETAIL